定常磁場 電気分極測定マニュアル

作成 2009/7/21 小鉄 貴広

- 1. 準備(前日に行うこと)
- 1. サンプルを必要サイズに加工し、準備をする。このとき、サンプルの断面積と厚さを測っておくことが必要である。図1に CuFeO₂の場合の端子付け例を示す。
 - ・電気分極が発現する方向に電場を印加するために、分極方向に垂直な両面に銀ペースト (Dupon4922N、硬化条件・・・100℃で1 昷間、熱を与える)を用いて端子を取り付ける。
 - ・使用導線は、Au 線 (φ 50µm) あるいは Cu 線 (φ 40µm) がのぞましい。

図1 CuFeO2の場合の端子付け例

2. SQUID 用の電気分極測定プローブを準備する。(図 2)

- ・MPMS-XL7(Quantum Design)を使用し、測 定は磁場一定のもと、温度 sweep での測定と なる。
- ・ロックナットからサンプル位置までの距離は
 1230 mm で、サファイア基板の大きさは 20
 ×5 mm²である。
- ・サンプルの大きさは、サファイア基板上にの
 る断面積を持つもので厚さは、2 mm 以下の
 ものが望ましい。
- ・同軸ケーブルは、レイクショア社製ウルトラ
 ミニチュア同軸ケーブルタイプ SS を用いて
 いる。

- 図 2 SQUID での定常磁場電気分極測定プローブ概略図
- 3. サンプルをプローブ先端のサファイア基板上に薄めたワニスで固定する。(図3参照)

- ・導線のたるみをなくすために、薄めたワニスでがっちり固定する。
- ・導線に Au 線を使用する場合は室温降下型の Ag ペースト、Cu 線を使用する場合はハン ダで導線を電極基板に固定する。

図3 サンプルをプローブに装着図

4. プローブにサンプルをつけたら、サンプル近くの電極基板及び、プローブ上部の電極位置 で抵抗を計測しておく。

※電気分極測定で必要な Keithley6430 は電気抵抗測定でも使用されるので、マシンタイムが 重複していないかどうか確認が必要。

- 2. 準備(実験当日)
- 1. エアロックバルブClose、Ready ランプ(緑)点灯、システム温度300 K、磁場0 Oe、SQUID のHe残量が十分あること(He levelが65%以上)を確認しておく。
- 2. SQUIDヘッドがStandardになっていることを確認する。
- 3. エアロックバルブを開ける。
- 4. バルブコントロールのChamberダイヤログボックスのVent Sample Spaceをクリックし、 プローブを入れる。
- 5. Purge & Seal (黒ボタン)を5~6回を行い、毎回Readyランプが緑に点灯することを確認する。
- 6. サンプルを磁場中心にする作業をする。
 - ・SQUIDマニュアル4(1)~(5)をする。
 - ・上の操作4(5)Full DC Scanによりサンプル位置(Position(cm)) を記録しておく。
 - ・上記でサンプル位置が分かると、Utility→Diagnostics→Transport→Move to () cm

の()ところに、サンプル位置を入力し、磁場中心にサンプルをセットする。 7. 回路を配線する。

・図4の電気分極測定ボックスを用意する。

図4 電気分極測定ボックス

図 5 電気分極測定回路

- ・ 図5に示した電気分極測定回路を作る。
- ・ 同軸ケーブル端子 A,B と D-Sub ピン C をプローブと繋ぐ。
- SQUID で電気分極測定をする際に必要な焦電盗測定器 Keitheley6517A を使用する際は、アースを取ることが必須となる。
- Keitheley6517Aの裏面(図6)にある input は3軸になっているので2軸に変換する プラグを装着する。

図6 3軸から2軸へ変換するプラグの装着図

- ・図5で示したBNC側のシールド線とcommonを接続する。(図7中の赤ケーブル)
- Keitheley6517A 裏面にある common からコンセント A にアースをとる。(図7中の 白ケーブル)

図7 BNC のシールド線と common を接続した図

- ボックスに付属しているアースを<u>コンセントAのアース</u>へ接続する。(図8)
- ・ 測定昷のノイズ防止のため、使用する 3 台の機械(直盗電源 Keithley6430、焦電盗測 定器 Keithley6517A、温度計 Lake Shore DRC - 91C)の電源プラグはアースを取らず すべて同じコンセントA に繋ぐ。(図8)

- ・ このとき、サンプルに電場を印加するために、ボックス中央のレバーを<u>両方とも上に向</u> ける。(6517A側)
- ・ 6517A と書かれた BNC に直盗電源を印加する。
- ・ 直盗電源に Keithley6430 を用いるときは、本体後ろの input/output に BNC (input に BNC の芯線、output に BNC のシールド線 <u>強磁場下での電気分極測定量とは逆!</u>))
 をつなぎ、No.4 に保存してある設定を呼び出す。
- ・ Poling 冷却が必要な場合は、90V(ここの電圧は物質により、臨機応変に変える)を印 加しながら2K(この温度も任意に決める)まで Poling 冷却する。
- ・ 図9に電気分極測定の回路図を示す。

図9 電気分極測定の回路図

- ・温度が 2 K になったところで Keithley6430 につながっていた同軸ケーブルを Keithley6517A に繋ぎ変え測定開始。
- 3. プログラムについて
- 1. 焦電泴測定器 Keithley6517A と温度計 Lake Shore DRC 91C とパソコンがきちんと通信できていることを確認する。
- 2. 定常磁場での電気分極を測定する際に使用するプログラムは LabVIEW 「MainProgram_ME_meas_v1.0.vi」である。これは、温度 sweep させながら焦電盗測 定できるプログラムである。(図 10)

図 10 定常磁場での電気分極測定用 LabVIEW 画面

- 3. 画面上の設定温度幅を 0.01 K に設定する。
- 4. SQUID のシステム温度が2Kになったところで、Keithley6430につながっていた同軸ケ ーブルを Keithley6517Aに繋ぎ変えプログラムをSTART させる。
- 5. 温度 sweep 速度の設定は、SQUID のシステム温度の設定画面上で2 K/min と設定する。
- 4. 測定の概略について
- 1. Poling 電場が端子 A→B の状態にして 2 K まで温度を下げていく。
- 2. 温度が 2 K になったところで Keithley6430 につながっていた同軸ケーブルを

Keithley6517A に繋ぎ変え、4.3 K 以下では SQUID の温度変化が 2 K/min でしか設定で きないので、2 K/min で 30 K まで sweep させる。

- 3.2.と同じ作業を Poling 電場が端子 B→A の状態にして行う。
- 4. 2.,3.の操作で得られたデータは温度に対しての焦電盗の値である。このデータから電気分 極の大きさをもとめるには以下の操作を行う。 焦電盗 IPと電気分極 P の関係には以下の式(1)が成り立っている。ここで S はサンプルの

断面積、Qはサンプルに蓄えられる電荷量である。式(1)を変形すると式(2)になる。

$$\frac{\mathbf{I}_{\mathbf{P}}}{\mathbf{S}} = \frac{1}{\mathbf{S}} \frac{\mathrm{d}\mathbf{Q}}{\mathrm{d}t} = \frac{\mathrm{d}\mathbf{P}}{\mathrm{d}t} \tag{1}$$

$$\int dP = \frac{1}{S} \int I_P dt = \frac{1}{S} \int I_P \frac{dt}{dT} dT$$
(2)

- 5. 式(2)より得られたデータに温度変化率の逆数をかけて、温度積分し、サンプルの断面積で 割ると電気分極が得られる。
- 5. 測定の実際について(CuFe_{1-x}Ga_xO₂の場合)
- 1. 直泴電源 Keithley6430 の電場がプラスの場合を測定(Data①)。(図11)
- 2. 同様に、直盗電源 Keithley6430 の電場がマイナスの場合を測定(Data②)。

20090611_7T_2									
1	II () 🕅	I IVI - III - III			Z A	<u>ba</u>			
	A	В				0			
0	2.0530	3.7665e-12							
1	2.0530	3.3202e-12							
2	2.0530	3.3077e-12							
3	2.0530	3.2927e-12							
4	2.0530	3.2451e-12							
5	2.0530	3.2165e-12							
6	2.0530	3.2083e-12							
7	2.0530	3.1728e-12							
8	2.0530	3.1390e-12							
9	2.0530	3.1304e-12				Ţ			
10									
行:0 列:	o								

図 11 CuFe1-xGaxO2の場合の Poling 電場がプラスのデータ

- 3. このとき図9のデータはそれぞれAは温度、Bは焦電盗の値を表している。
- 4. 測定開始温度である2K付近は放電場の影響が含まれるので、そのノイズが消える2.2K
 付近までデータにマスクをかける。また、30K付近で分極が完全に消えると予想して、2.2
 ~30Kまでのデータを用いる。30K以降のデータには同様にマスクをかける。
- 5. テーブル内に新たに列を追加し、式(2)で説明した dt/dT の値を B のデータにかける(C の

データ)。5 K/min で温度変化させているので、dt/dT の値は 60 sec/5 K より dt/dT = 12 sec/K となる。(図 12)

1 20090611_7T_2									
1	L 🕡 🅅] []] -[[] -[[] -[[] -[[] -[[] -[[] -[[2 A	64			
	A	В	C			\$			
26	2.2080	2.8029e-12	3.3635e-11			-			
27	2.2360	2.8008e-12	3.3610e-11						
28	2.2670	2.7891e-12	3.3469e-11						
29	2.2950	2.7743e-12	3.3292e-11						
30	2.3250	2.7659e-12	3.3191e-11						
31	2.3480	2.7284e-12	3.2741e-11						
32	2.3645	2.7016e-12	3.2419e-11						
33	2.3760	2.7064e-12	3.2477e-11						
34	2.3855	2.7081e-12	3.2497e-11						
35	2.4000	2.6710e-12	3.2052e-11			-			
36									
行:2 列:2	2								

図 12 CuFe_{1-x}Ga_xO₂の場合の Poling 電場がプラスのデータ

6. テーブルの温度の列を選択し、「機能」から「降順ソート」を選択する。(図13参照)

¥ KaleidaGraph ファイル 編集 ギャラリー プロット データ i っし align align black	幾能 マクロ ウィ 見順いート	ンドウ へ - Ctrite (μフ°(<u>H</u>)						
	デキボック 1 m 降加リント 級数の作成 置き換え データの階級化	Ctrl+¥ trl+= Ctrl+-	20090611_7T_2						
								Щ24,	
	航計… t-検定…			A	В	C			
	 分散分析 <u>W</u> ilcoxon Kruskal-Wallis		25	2.1845	2.8466e-12				
			26	2.2080	2.8029e-12	3.3635e-11			
	Friedman		27	2.2360	2.8008e-12	3.3610e-11			
-	- 	Ctrl+[Ctrl+] 5	28	2.2670	2.7891e-12	3.3469e-11			
	マスク解除		29	2.2950	2.7743e-12	3.3292e-11			
	マスクを反転する		30	2.3250	2.7659e-12	3.3191e-11		1	
			31	2.3480	2.7284e-12	3.2741e-11			
			32	2.3645	2.7016e-12	3.2419e-11			
			33	2.3760	2.7064e-12	3.2477e-11			
			34	2.3855	2.7081e-12	3.2497e-11			
			35 👩	•					
			行:0 列:0	07030 00 00 00 00 00 00 00 00 00 00 00 00				100 - Editer	

図 13 CuFe_{1-x}Ga_xO₂の場合の Poling 電場がプラスのデータ

- 7.6.の操作後、温度の並びが逆になり30Kから2.2Kに向かって並ぶ。
- 8. マクロの中の「Integral-Curve」を選び、「X コラム」に「A 列の温度」、「Y コラム」に「C 列の焦電盗値」、「出力コラム」に「D」、初期値を 0 として線積分する。D に出てきた値を さらに、試料の断面積で割り、電気分極の単位をµ C/m² にするため、10⁻¹² で割り、積 分

を逆にしているので -1 をかけると電気分極がもとまる。

9. 8.の操作後にグラフを書くと図 14 のようになる。直泴電源 Keithley6430 の電場がマイナ スの場合も同様である。

